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Abstract
This paper introduces Heimdall, a highly accurate and effi-

cient machine learning-powered I/O admission policy for flash

storage, designed to operate in a black-box manner. We make

domain-specific innovations in various ML stages by intro-

ducing accurate period-based labeling, 3-stage noise filtering,

in-depth feature engineering, and fine-grained tuning, which

together improve the decision accuracy from 67% up to 93%. We

perform various deployment optimizations to reach a sub-µs
inference latency and a small, 28KB, memory overhead. With

500 unbiased random experiments derived from production

traces, we show Heimdall delivers 15-35% lower average I/O

latency compared to the state of the art and up to 2× faster

to a baseline. Heimdall is ready for user-level, in-kernel, and

distributed deployments.

CCS Concepts: • Software and its engineering → Op-
erating systems; • Computing methodologies → Ma-
chine learning approaches.

Keywords: ML for systems; I/O admission control; File and
storage systems; Operating systems; Distributed systems
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1 Introduction
Several recent advances in data centers [5, 7, 63] have been
directly driven by the wider adoption of flash arrays. SSDs,
with their microsecond-level access speeds, have become the
preferred choice in the storage hardware stack. However, a
piece of dark cloud above the high performance of SSDs is
their non-deterministic internal operations [31, 32, 41, 51, 81],
such as garbage collection (GC), internal buffer flushing, and
wear leveling. These growing background complexities cause
significant tail latency amplification, leading to unpredictable
interruptions that degrade user experience. For example, GC
operations can negatively affect performance by increasing
latency by up to 60× [51]. To address this challenge, I/O
admission control (referred to as replica selection in some
literature) has emerged to avoid submitting I/O requests to
flash arrays undergoing intensive internal operations.
There is a vast body of research on I/O admission con-

trol techniques that rely on heuristics, such as hedging [34],
replica scoring, and rate limiting [33, 36–38, 74, 87], forecast-
ing and rate controlling [53, 86]. However, with the growth of
storage industry, recent real-world workloads show a more
complex pattern due to the increasing hardware capability,
enabling more work to be done. As a result, heuristics-based
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Joint inference (OJ), relearning/
retraining (OT), quantization (OQ), 

language conversion (OL), 
inaccuracy masking (OM)

Real-system deployment (PR), multiple 
deployment targets (PM), emulated 

environment (PE), accelerator usage (PA), 
distributed ML (PD)

Data 

Labeling

Feature 

Engineering

Model Engineering Training Engineering

Platforms 

(Deployment/Testbed)

Deployment 

Optimization

Data 

Preparation

Figure 1. Machine learning pipeline (§1).

I/O admission control falls short due to its predefined rules
that impede its adaptability. To address these limitations,
recent research has seen a shift toward leveraging machine
learning (ML) across various areas of storage due to the learn-
ing ability that overcomes the rigidity of heuristic-based
algorithms. More and more challenges of complex decision-
making in various contexts shift to ML-powered, includ-
ing I/O admission [26, 32, 80], caching [43, 46, 68, 77, 82],
configuration tuning [17], deduplication [64], failure detec-
tion [10, 22, 56], indexing [21, 54, 73], prefetching [9, 72],
scheduling [55], and many others.
While ML-based solutions often outperform traditional

heuristics, many studies fail to explore the full scope of the
ML pipeline during the design of these systems. These gaps
occur when key stages of the ML design process, as shown
in Figure 1, are insufficiently addressed. Skipping or over-
simplifying these stages can hinder the model’s potential
in terms of accuracy, performance, and adaptability. This
is particularly evident in the case of ML-powered I/O ad-
mission control systems. When tested on modern devices
and recent I/O traces (from MSR Cambridge, Alibaba, and
Tencent [1, 61, 83]), several ML-powered I/O admission con-
trols [26, 32, 47] showed a significant drop in accuracy—
averaging 67%, far below their original claims. In the context
of I/O admission control, low accuracy is particularly prob-
lematic, as false admits and reroutes can negatively impact
I/O latency. These findings underscore the importance of
a more thorough execution of the ML pipeline to achieve
better-performing models.
In response, Heimdall introduces a more robust ML-

powered I/O admission control system, carefully developed
by following the key stages of the ML pipeline. By infusing
with deep storage domain knowledge and rigorously opti-
mizing the model at every stage, Heimdall is designed to
achieve higher accuracy and better performance, address-
ing the challenges of modern storage workloads in latency-
critical environments. Heimdall operates as a black-box

system that handles I/O requests, making admission or redi-
rection decisions while monitoring request latency to detect
the impact of SSD internal processes. Heimdall introduces
three technical contributions.
First, Heimdall introduces the notion of "period-based

labeling", derived from our observation of production traces.
We observed that SSD internal management process doesn’t
only affect a single I/O but consecutive I/Os in a period,
hence called period-based labeling. This data labeling tech-
nique enables us to teach a more accurate ML model. This
technique can also be applied in other research areas related
to SSDs and scheduling.
Second, to ensure Heimdall is suitable for real-world

production systems, we introduce a learning granularity
mechanism that is ideal for scenarios where coarse-grained
decisions are sufficient. By allowing coarse-grained predic-
tions, Heimdall trades a small accuracy loss for a significant
boost in inference throughput. This approach generalizes
well to a common challenge in ML-for-systems: the difficulty
of real-world deployment. To the best of our knowledge, we
are the first to apply this technique to optimize I/O admission
control. We further validate Heimdall’s real-world appli-
cability by successfully integrating it into both the Linux
kernel and Ceph RADOS.
Third, we present a generic and extensible ML pipeline

that enables the development of Heimdall’s admission con-
trol system. This flexible pipeline highlights the importance
of incorporating domain knowledge and can be adapted to
address a wide range of storage system challenges.
Finally, we evaluate our solution on production traces

from companies (MSR, Alibaba, and Tencent) with three
levels of integration: user-level storage (for fast and large-
scale evaluation), Linux kernel (for mimicking real deploy-
ments), and Ceph RADOS (for distributed storage settings).
Our comprehensive evaluation with 500 experiments shows
that Heimdall delivers 15-35% lower average latency com-
pared to popular algorithms, such as hedging and advanced
admission heuristic and ML models [32, 74], and up to 2×
faster to a baseline. Moreover, we achieve sub-µs inference
latency, up to 0.08µs on a 2.30GHz processor.
We conclude by demonstrating how Heimdall ’s opti-

mized I/O admission system can serve as a foundation for fur-
ther research and innovation in ML-driven storage solutions.
While developed for I/O admission control, Heimdall’s ex-
tensive ML pipeline can also support broader explorations in
storage optimization by enabling students and researchers
to experiment with new techniques within the pipeline or
extend its application to other storage challenges.

2 Background and Motivation
Admission problem: The admission problem is fundamen-
tal for operations such as job submission [11, 20, 40], VM
placement [69], cached data [80], RPCs [84], and I/O re-
quests [30, 32, 45]. The admission policy needs to decide
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2) admit

1) I/O Backend nodes
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I/O features: queue len., lat. and 
queue len. of last few I/Os, etc.  

Figure 2. I/O admission (§2). (a) I/O admission decision and

(b) neural-network-based decision in every backend node.

whether to admit the operation to an underlying resource,
delay, or reroute it to another resource. Such a policy is use-
ful for resources that exhibit tail-latency behavior where
most of the time the operations are fast but sometimes (e.g.,
1-10% of the time) are slow because of resource contention.

I/O admission: The I/O admission problem encompasses
several different research objectives, such as reducing ex-
cessive flash writes [80] and minimizing tail latency [32].
We focus specifically on I/O admission at the block level in
parallel, redundant flash storage arrays that use data replica-
tion, with the goal of reducing tail latency. For example, in
data centers, redundancy mechanisms such as RAID ensure
fault tolerance by storing replicated data, but they also in-
troduce opportunities for performance optimization. Prior
work, such as FusionRAID [35], Tiny-Tail Flash [81], and EC-
Cache [66], has demonstrated that reconstructing late data
from the full stripe can often be faster than waiting for a slow
I/O response. These findings suggest that redundancy-aware
scheduling can be leveraged to optimize storage performance.
I/O admission works by selecting which replica an I/O re-
quest should be submitted to in order to escalate the I/O
request latency. As illustrated in Figure 2a: (1) The front-
end layer sends an I/O request to a backend SSD storing the
data. Each backend node makes admission decision to (2)
admit the request to the underlying SSD or to (3) decline
the request and ask the front-end layer to (4) reroute it to
another node that has the replica.

Flash storage: Admission decision is useful to reroute
I/Os from flash devices that are experiencing heavy resource
contention from GC, internal buffer flush, wear leveling, and
not to mention, bursty workloads. Without proper admis-
sion/rerouting, all of these can induce read tail latencies and
increase the average latency. Since write tail latencies are
very rare due to device-internal write buffers [31, 32, 52], we
focus on optimizing read latencies.

ML-based policies: I/O admission can be based on ML
models such as LinnOS [26, 32], which uses a light neural
network to predict contention inside black-box SSDs. As
shown in Figure 2b, LinnOS is designed to make admission
decisions at a uniform per-page granularity (4KB I/O). Con-
sequently, it does not include I/O size as an input feature.
Instead, LinnOS bases its decisions on historical latency and
I/O queue length features, such as the latencies of the last
few I/Os and the queue lengths at their arrival times. Using
this information, the model predicts whether an incoming
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Figure 3. Accurate labeling (§3.1). In all figures, a dot rep-

resents an I/O. (a) Fast / slow cutoff, latency based. (b) Inaccurate
labeling, latency CDF with annotated big I/Os. (c) Timeline figure,

period-based labeling. (d) Gradient descent.

I/O will be “fast” (hence, admit the I/O) or “slow” (hence,
reroute the I/O). LinnOS is deployed at the kernel block layer
of every flash device.

Training: To make accurate binary “fast/slow” predic-
tions, an ML model like LinnOS must be trained first. Before
enabling admission decision, a storage operator can log the
characteristics of the last 15 minutes I/Os, recording their
static/runtime features and the I/O latencies. The operator
then labels every logged I/O as “fast” or “slow” based on some
labeling algorithm (more in Section 3.1). During training, the
model learns which I/O patterns result in slow I/Os for the
workload-device pair. The neuron weights from training are
then applied to the in-kernel model for deployment.

Accuracy: The ML model can make two inaccurate deci-
sions: false admits, when the I/O is predicted to be “fast,” but
apparently experiences slowness, or false reroutes, when it
predicts “slow,” but there is no busyness. Our recent evalu-
ation found the accuracy of LinnOS’ 4-year-old model de-
graded to 67% as it failed to keep up with modern workloads
and faster SSDs.

3 Heimdall’s Pipeline
We begin by describing our solution motivated by the above-
mentioned challenges. Throughout this section, wewill show
how we significantly improve the I/O admission control ac-
curacy by leveraging each step in the design process.1 In
particular, we make domain-specific innovations in the data
analysis stage with accurate labeling (§3.1) and noise filter-
ing (§3.2); the modeling stage with thorough feature engi-
neering (§3.3), model exploration (§3.4), and hyperparameter
tuning (§3.5); and the training stage (§3.6).

3.1 Accurate Labeling
We first evaluated the automated labeling that prior works
performed [19, 27, 28, 32, 65] in the context of latency-based
1Throughout this section, we use ROC-AUC [23] for accuracy, but later in
Section 6.4, we report various accuracy metrics.
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1. Function AccurateLabeling ()
2. Input : Data D {size, throughput, latency}
3. Output: Data D {size, throughput, latency, label}
4. high_lat, low_thpt = CalcThreshold(D)
5. MAX_DROP = CalcThptDropThreshold(D)
6. thpt_median = CalcMedian(throughputs)
7. for io in D do: // Initialization
8. io.label = 0; io.mark_start = 0
9. if IsBusy(io, high_lat, low_thpt, MAX_DROP) do:
10. io.label = 1 // Start of the TailZone
11. for io in D do:
12. if io.label == 1 do: // Label the TailZone
13. while io.next.throughput < thpt_median do:
14. io.label = 1 // 1 = decline; 0 = admit
15. io = io.next

Figure 4. Accurate labeling algorithm (§3.1).

modeling. We found that several methods use latency-based
algorithms to decide the latency cutoff, as illustrated in Fig-
ure 3a, where the algorithm labels the I/Os in the training
data set with “fast” or “slow” based on the inflection point
(cutoff) generated by the algorithm.

While latency-cutoff algorithms work well in certain
domains—for example, in networking [65] where per-
packet/per-request size remains stable, or in storage domain
where the per-page latency model can only make inferences
on per-4KB I/O [32]—this method does not work for ML
models that make decision at the whole, variable I/O level
ranging from one-page (4KB) to big request (2MB). For ex-
ample, in Figure 3b, a large I/O (the red dot) is labeled as
“slow” here because its measured latency in the dataset is
larger than the cutoff. However, this is inaccurate because
even if the I/O is rerouted to another device, the I/O will still
be “slow” due to its large size.
To rectify the problem, we found that period-based algo-

rithms give the best result for our problem domain. That is,
instead of deciding which specific I/Os should be marked
slow or fast, we label based on periods (window of time)
where our algorithm guesses whether the device is in fast
period (e.g., no internal contention) or slow period (e.g., ex-
perience GC contention, etc.). Although we cannot exactly
predict the occurrence, we can still discover some patterns in
the data to narrow down the plausible tail latency segments
in the dataset. For example, in Figure 3c, all the I/Os in the
slow period (e.g., where latency spikes and throughput drops
happen) will be labeled as “slow.”
Our algorithm is composed of 3 stages, as shown in Fig-

ure 4. (a) First, in line 9, we categorize the relationship be-
tween latency and throughput. We should only be suspicious
of device busyness when latency is high and throughput is
low at the same time. We observed that internal contention
causes throughput drops and latency spikes. Throughput is
more sensitive for detecting the start and the end of such
events since throughput also takes I/O size into account. (b)
Thus, we use latency and throughput thresholds (declared
in line 4) to decide when latency looks high or throughput
looks low.

0 .5 1
Accuracy (norm.)

cutoff

period(a)

0 .5 1
Misprediction Rate

1

2

3
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u
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r 

Ty
p
e(b)

Figure 5. The importance of preprocessing (§3.1 §3.2).
(a) Cutoff vs period-based labeling. (b) Noise misprediction rate.

Finding threshold values that work across different de-
vices and workload characteristics is challenging. We use a
gradient descent-based method to pick the proper thresholds
across various SSD and workload characteristics to balance

sensitivity and accuracy. For example, Figure 3d shows a
global optimum for accuracy and sensitivity, shown as the
blue and red lines, respectively. Finally, (c) based on these
values, we decide when the busy period starts and ends (lines
12 to 15). Figure 5a shows the accuracy improvement we
obtain by migrating from cutoff-based labeling to a more ac-
curate period-based labeling, emphasizing the labeled data’s
better learnability. In the evaluation (§6.4), we demonstrate
that accurate labeling improves Heimdall’s accuracy by
5.5%, resulting in accuracy as high as 93%.

3.2 3-Stage Noise Filtering
To minimize the impact of noisy training data on the model,
we introduce a domain-specific, 3-stage noise filtering pro-
cess. This process targets (1) outliers within slow period, (2)
outliers within fast period, and (3) short noises. Our out-
lier removal specifically targets noise arising from irregular
or non-representative events that do not meaningfully con-
tribute to tail latency, hence not conflicting with the goal of
improving tail performance. As shown in Figure 5b, these
outliers often lead to model mispredictions, making them
disruptive rather than informative. Aligning with the eval-
uation findings in Figure 14a in Section §6.4, we find that
the three types of noise cumulatively degrade accuracy by
16%. Eliminating them allows the model to focus on learning
and addressing prolonged contention patterns more effec-
tively, ultimately improving tail performance rather than
diminishing it.

In the first stage, we remove outliers within the slow period,
as illustrated in Figure 6a. Here, long sequences of slow
I/Os may indicate the device’s internal busyness. However,
sometimes a few I/Os can be “lucky” and hit the internal
device cache even though the device is busy with other activ-
ities that only affect NAND-level reads and writes. Thus, as
shown in the figure, we remove these “fast” outliers, specif-
ically I/Os that have lower latency and higher throughput
than the respective median values within the period.

In the second stage as shown in Figure 6c and Figure 6d,
we remove outliers within the fast period, the opposite of the
first case above. These slow I/Os could happen due to some
other rare device idiosyncrasies such as read retries due to
voltage mismatch [15, 60, 88], error check and correction
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Figure 6. Noise filtering (§3.2). Sample data from Alibaba

trace. (a) Outliers within slow period. (b) Short noises. Outliers within
fast period: (c) latency and (d) throughput.

(ECC) [60], and many others. Since these rare cases are tran-
sient errors in nature, removing them from the dataset will
increase the model’s accuracy.

The data now becomes “cleaner,” but we still find a slight
irregularity as a result of our labeling process. We observed
a short burst of a slow period (e.g., only 3 consecutive I/Os),
which is unlikely caused by internal device contention, as
illustrated in Figure 6b. Because supplying such short bursts
could confuse the model, in the third stage of the filtering, we
employ the same gradient-descent method as in Figure 3d
in Section 3.1 to find a reasonable threshold that will provide
high accuracy but low sensitivity. In most datasets, we find
a quick burst of 3 (or less) consecutive “slow” I/Os should
be removed. Overall, our 3-stage noise filtering improves
accuracy further by 16% on average (§6.4).

3.3 In-Depth Feature Engineering
Originally, typical request-based traces contain basic features
such as request arrival time, size, and I/O type (read/write).
Deriving more features from the original ones will help ML
model to grab more characteristics, increasing the accuracy
at cost of higher computation overhead. Since we work on
latency-sensitive system, we need to balance the obtained
model accuracy and the computation overhead by extracting
enough advanced features, selecting the best set of impor-
tant features, and scaling the numbers well to avoid uneven
weighting of different features.

To ensure a fair evaluation of feature engineering (e.g. fea-
ture extraction, feature selection, etc.), we use a neural net-
work (NN) model, as it avoids architectural constraints found
in tree-based models, such as depth limitations in decision
trees. This flexibility makes NN particularly suitable for iden-
tifying variations in feature quality without being restricted
by rigid structural assumptions. While prior work [32] have
already performed basic feature extraction by including
latency and I/O queue length observed when every I/O is
submitted, feature selection by removing timestamp and
disk ID, and feature scaling by using digitization, they end
up with having 31 features. As a result, each inference costs
2ms overhead. We seek to answer the question: "Without
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Figure 7. Feature engineering (§3.3). (a) Correlation val-

ues of each feature, (b) accuracy improvements attributed to each

feature, (c)model accuracy on various historical depths, and (d)model

accuracy on different normalization methods.

sacrificing the accuracy, can we use simpler model with less

number of features to reduce the computation overhead?"

First, we do feature selection by removing features with
low correlation scores, such as I/O arrival time (timestamp),
which indicates that there is little to no correlation towards
whether the I/O induced tail latency behavior. Figure 7a
ranks the features by their correlation to the decision.
Next, we conducted feature analysis on the resulting

features. Figure 7b shows how the features affect the overall
model accuracy, confirming earlier finding that the five main
features (the queue length, historical queue length, historical
latency, historical throughput, and I/O size) are crucial in
improving the accuracy.
Third, we also varied the historical depth (𝑁 ) of certain

input features to determine the amount of past information
needed by the model to obtain reasonable accuracy. By his-
torical depth, we refer to the information of the last 𝑁 I/Os
(such as the most recent queue lengths and I/O latencies).
This information can imply, for example, if most recently, we
observe an I/O with high latency but a short queue length,
the device is busy internally. Figure 7c shows that 𝑁=3 is
sufficient to improve accuracy across various datasets.
Finally, we explored
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Figure 8. Model explo-
ration (§3.4). NN model

achieves high and stable accuracy.

feature scaling tech-
niques to reduce model
bias to specific features
while maintaining low
computation overhead.
We tried various nor-
malization methods,
as summarized in the
first three bars of Fig-
ure 7d [8, 85], and found
that min-max gives the best accuracy on average. Stan-
dardization methods, such as robust and standard scalers,
deliver higher accuracy but are not feasible for our domain
because of their high memory overhead for keeping all the
historical latency values for standard deviation and quantile
calculations. Min-max normalization, in contrast, requires
only the minimum and maximum values, making it both
accurate and lightweight.
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Figure 9. Hyperparameter tuning (§3.5). (a) Per-page vs.
per-I/O, (b) hidden layers, (c) number of layers, (d) activation func-

tions, (e) output layer, and (f) final NN design.

3.4 Model Exploration
With the chosen feature set, we perform multiple model
explorations to identify the most suitable model for our
problem domain. To ensure fairness, each model undergoes
light hyperparameter tuning until no significant accuracy
improvements are observed. Figure 8 summarizes our find-
ings, where the x-axis is the accuracy variation (measured
across datasets) and the y-axis is the normalized accuracy;
the upper left of the figure is a more suitable model. Overall,
we found that the neural network (“NN”) achieves good ac-
curacy with the highest stability compared to other models.

3.5 Neural Network Hyperparameter Tuning
We conduct hyperparameter tuning to determine the op-
timal number of layers, neurons, and activation functions
to balance the accuracy and complexity. As a result of disci-
plined feature and model engineering, our new NN depicted
in Figure 9f is significantly simpler than LinnOS’ NN model
due to these reasons:

(a) First, as depicted in Figure 9a, since LinnOS uses a
cutoff-based per-page labeling, its model can only make in-
ferences on every 4KB request. Therefore, a big I/O must
be split into small uniform-sized block I/Os, increasing the
number of inference for each I/O. Meanwhile, as we use
period-based per-I/O labeling, we only need one inference
for each I/O of any size.

(b) Second, compared to LinnOS which only uses one
hidden layer, we use 2 hidden layers. Figure 9b shows that
the most impactful accuracy growth comes from adding the
2nd hidden layer.

(c) Third, to minimize the computation overhead, we use
128 and 16 neurons for the first and second hidden layers,
respectively (while LinnOS uses 256 neurons in just one
layer). In Figure 9c, the x- and y-axis represent the number
of layers in the 1st and 2nd hidden layers, respectively, and
the cell color represents the accuracy achieved. We select the
lightest model design which gives relatively high accuracy
(darker color).

(d) Fourth, we kept ReLU for the activation function of the
hidden layers. The x- and y-axis in Figure 9d represent the
permutation of the 1st and 2nd layer’s activation functions,
respectively. We chose ReLU due to its resulting high accu-
racy (darker color), light overhead, and simple computation
compared to others.

(e) Finally, for the output layer, we experimented with soft-
max, linear, and sigmoid [70, 85]. Based on the results shown
in Figure 9e, we opted for a single-neuron sigmoid. This
differs from LinnOS’ 2-neuron output layer which bears the
consequence of doubling the computation when propagating
the gradient from its neighboring hidden layer.

3.6 Training
Due to the inherent nature of tail latency, there exists data
distribution imbalance between slow and fast I/Os, where
the fast I/O dominates the overall latency distribution. To
tackle this problem within training process, we tried biased
training by customizing the weighted loss function [76] to
penalize the model when admitting the slow I/Os. However,
we see insignificant improvement or evenworse results. Upon
analysis, different datasets resulted in different optimum loss
values due to the variations of slow and fast I/O distribution,
thus not feasible.
Other possible methods are data sampling and data se-

lection. Since oversampling and undersampling might ex-
pose some risk [75], we tackle this problem by making sure
our data selection process (§3.3) includes some periods with
heavy write I/Os (to trigger device background activities)
and further augment the data (rerate and resize).

4 Deployment Optimizations
After discussing modeling and training, we now shift to
deployment, focusing on our efforts to optimize inference
latency through joint inference techniques and Python-to-C
conversion and optimization.

4.1 Negligible Inference Latency
Many storage systems, such as the Linux block layer and
Ceph [78], are written in C, not Python. This makes it diffi-
cult to use optimized inference libraries like TensorFlow or
PyTorch, which operate in user space. Embedding these li-
braries into latency-critical systems, such as the Linux kernel,
would introduce significant overhead. Therefore, to improve
inference latency in real deployments, we must convert our
models from Python-to-C. To achieve this, we follow a
three-step process: Python-to-C/C++ conversion, gcc opti-
mization, and quantization, allowing us to reduce inference
time to sub-µs levels.
First, with a careful and manual Python-to-C++ conver-

sion, we reduce the inference time to 20µs. Second, we use
additional gcc optimization to reduce the execution time,
avoiding quick compilation that sacrifices the performance.
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Components Integration + Eval
Dataset preparation 2.5 K In User level 3.7 K
Design pipeline 3.6 K In Linux kernel 2.1 K
Optimizations 1.2 K In Ceph RADOS 2.3 K
Retraining 0.2 K Evaluation module 5.3 K

Total: 20.9 K

Table 1. Implementation scale (§5). Heimdall is written

in 20.9K lines of code (LOC) mainly in Python and C/C++.

We opted for -O3 since it gives the highest optimizations
while still obeying the strict compliance to language stan-
dards and retaining the computation precision, which speeds
up the inference to 0.08µs.
Finally, we perform quantization to reduce the computa-

tional complexity of our model and minimize the memory
footprint. We multiply the weights by 1,024 for all layers and
quantize the bias of each layer correspondingly to match
the scale. We use 1,024 because we can capture the non-zero
digits from most of the weights within 4 decimal points. The
final latency drops to 0.05µs per inference.

We also ran tests on various CPUs and found that interest-
ingly the inference latency can vary by an order ofmagnitude.
For example, we get 0.12µs latency on AMD Ryzen 9 5900HS
3.30GHz and 0.08µs latency on AMD EPYC 7352 2.30GHz.
On Apple M1 Pro 3.20GHz, it is even faster, at 0.05µs. We
leave further investigation for future work.

4.2 Joint/Group Inference
In some deployments, making admission decision on every
I/O might be too fine-grained, leading to high CPU over-
head under intensive I/O workload and limited resources. Re-
cent approaches, such as LAKE [26], propose GPU batching,
which only works well in large-batch inference by exploiting
parallelism. While improving throughput, the host-to-GPU
latency overhead incurs additional delays.

In contrast, we are inspired by joint/group inference [14,
29, 59]. We modify the model to be able to take features of
up to 𝑃 I/Os. Joint inference is more efficient than batching,
where it makes one inference on behalf of all of the 𝑃 I/Os
(imagine a green traffic light for 𝑃 cars to pass through),
while batching still requires the model to be run 𝑃 times and
make 𝑃 decisions.

In Heimdall, one can specify the model’s granularity for
inference, ranging from 1 I/O per-inference up to 𝑃 I/Os
per-inference. For all inference granularity, Heimdall uses
the same model architecture. However, the number of his-
torical data (see §3.3) are perpendicular to the granularity
(𝑃 ). Storage operators can decide to set the granularity. The
challenge of developing joint inference models lies in the
feature selection phase since we do not want to increase the
model complexity by aggregating all input features from the
𝑃 I/Os. Instead, we believe that the most up-to-date device
behavior is reflected in the most recent I/Os. Thus the pri-
oritization of features from the most recent I/Os, ignoring

most features from the rest of the I/Os. For instance, for 𝑃=5,
we still only supply the historical information of the last
three I/Os before this group of 5 I/Os (§3.3), keeping the
model light from the reduced redundancy. Later in Section
6.5, we evaluate the tradeoffs, e.g., higher 𝑃 leads to higher
throughput/performance but only reduces accuracy slightly.

5 Implementation Scale
Our effort to build a playground of applying machine learn-
ing for storage system is shown in Table 1, which breaks
down our 20.9 KLOC implementation of Heimdall pipeline.
The left column shows the main components, which in-
clude dataset preparation scripts, all the design stages (§3),
deployment optimizations (§4), and retraining (§7), and
the right column shows our three levels of integration in
user-level storage (§6.1), Linux kernel (§6.2), and Ceph RA-
DOS (§6.3), including our evaluation module that contains
re-implementation of other policies. This extensible play-
ground can be easily reused for other research.

6 Evaluation
Our comprehensive evaluation is set up as follows: • Data
size: We use 2 TB of raw I/O block traces from Alibaba, Mi-
crosoft, and Tencent [1, 61, 83] and generate 11 TB of interme-
diate data for all the experiments. • Target deployments:
We integrate Heimdall into user-level storage (for fast, large-
scale evaluation), Linux kernel (to mimic real deployments),
and Ceph (for distributed evaluation). •Machine and SSDs:
By default, we use Chameleon’s Storage-NVMe node which
has AMD EPYC 7352 2.30GHz 24-Core CPU with 256 GB
DRAM. We use 10 different SSD models from various manu-
facturers2 • Train/test: All the experiments use 50:50 train-
test methodology which provides a more balanced represen-
tation compared to the 80:20 split, ensuring the evaluation
set remains completely unseen during the training process,
guaranteeing that our evaluation metrics are unbiased and
accurately reflect the model’s performance on unseen data.

This section will address the following key questions:

• How does Heimdall’s performance compare to state-
of-the-art algorithms in large-scale evaluations? (§6.1)

• How does Heimdall perform when deployed in Linux
kernel? (§6.2)

• How does Heimdall scale to improve I/O latency in a
multi-node Ceph cluster? (§6.3)

• How does each step in the ML pipeline contribute to
Heimdall’s overall performance? (§6.4)

• How can Heimdall’s inference throughput be opti-
mized with joint inference? (§6.5)

2Intel (DC-S3610 and DC-P4600), Samsung (850-PRO, 970-PRO, PM961,
PM1733, PM1725a, MZV-PV128HDGM, and MZH-PV128HDGM), and Hi-
tachi SN260.
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Figure 10. Heuristics-based algorithms comparison
(§6.1). C3 outperforms other state-of-the-art algorithms.

• What are the CPU and memory overheads, as well as
the training time, for Heimdall’s light neural network
model? (§6.6 and §6.7)

6.1 Large-Scale Evaluation
To evaluate Heimdall comprehensively and unbiasedly,
we conducted a large-scale evaluation with hundreds of
random timewindows (“traces”) from various real-world
traces from Alibaba, Microsoft, and Tencent [1, 61, 83]. To
ensure that these hundreds of traces represent various work-
load characteristics, we picked the traces based on five crite-
ria which are read/write ratio, size, IOPS, randomness, and
overall ranking. For each criterion, we picked time windows
with p10, p25, p50, p75, p90, and p100 values, with respect
to all the time windows in the long, multi-day traces.

To further increase the variability of our datasets, we also
apply 5 different data augmentation functions (0.1× rerate,
0.5× rerate, 2× rerate, 2× resize, and 4× resize). This approach
simulates even more demanding scenarios than typically en-
countered in real-world applications. From this large dataset
pool, we randomly picked 500 traces. Each trace is then
capped at 3 minutes long, which contains between 100k to
10 millions of I/Os. A 3-minute trace is long enough for the
underlying devices to exhibit some tail latencies due to GC,
write amplification, and other contentions, but at the same
time, it is short enough for a large-scale experiment.

To ensure a realistic evaluation, we focus on a light-heavy
workload combination, reflecting real-world scenarios with
varying load conditions that can lead to tail latency if I/O
selection is not handled properly. We categorize a trace as
light if the I/O count is less than 300k. In this combination,
it is essential to avoid blindly rerouting I/Os from the heavy
trace to the light one. Doing so could inadvertently overload
the other device, resulting in reduced overall performance.
An efficient model should only decline and reroute I/Os when
absolutely necessary.

Consistent with the trace source, our traces do not include
thread IDs. Instead, we follow standard practice by execut-
ing concurrent I/O operations through deploying multiple
threads (𝑁≥8) on the client side. These threads submit I/O
streams in parallel respecting the I/O’s timestamp, following
the behavior of concurrent applications issuing I/O opera-
tions. Additionally, we conducted comprehensive tests across
consumer-level and enterprise-grade SSDs, which are prone
to garbage collection (GC) under heavy load.
For faster experiment setups (just for this subsection),

we deploy Heimdall in a user-level I/O replayer to simply
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Figure 11. Large-scale evaluation (§6.1). Subfigures (a)
and (b) depict the read latency at percentiles ranging from p50 to

p99.99 and the average latency.

mimic application-level storage with direct I/Os. For each
experiment, we simulate a 2-way replicated storage environ-
ment using a machine equipped with 2 Samsung SSD 970
PRO 1TB SSDs. During each experiment, we run a random
trace where the I/Os will pass through a Heimdall model
specific to the device, which determines the I/O admission
decision. If an I/O is declined, it is redirected to the other
device, which will be admitted by default.

To properly evaluateHeimdall, we compare it against sev-
eral well-known policies, including a simple always-admit
approach with no rerouting (baseline), random target se-
lection (i.e., sending I/O to a randomly chosen device), and
state-of-the-art admission and rerouting algorithms such as
C3 [74], AMS [36], Heron [33], LinnOS [32], and hedg-
ing [24]. In the first experiment, we focus on selecting a rep-
resentative algorithm from the heuristic-based category, as
many proposed algorithms fall into this group. This selection
simplifies the subsequent evaluation while still capturing
the best performance of algorithm group. As shown in Fig-
ure 10, we evaluated three key heuristic-based algorithms:
AMS, C3, and Heron. The result shows that C3 and AMS
deliver very similar performance, with both providing lower
latency compared to Heron. Given C3’s wide adoption in the
industry and its competitive performance, we selected C3 as
a representative for heuristic-based algorithms and evaluate
it further in the next experiment, as well as in the Kernel
(later in §6.2).

Building on this, Figure 11a highlights the tail latencies
across various percentiles, further illustratingHeimdall’s su-
periority over state-of-the-art algorithms. These latencies are
the average percentile from the 500 experiments, hence show-
ing Heimdall wins in large-scale, unbiased experiments. Fur-
thermore, Figure 11b shows another impressive outcome
of Heimdall in delivering the lowest average latency.
We can also see that while hedging delivers shorter tail

latencies above p99, its average latency is far worse than
Heimdall. For instance, hedging at p98 (between 0.75ms–
1.5ms), after a 2ms timeout, a backup I/O is sent, causing
too much overload (instability) which leads to higher aver-
age latency than the baseline. Therefore, hedging appears
ineffective for low-latency requests.
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Figure 12. Kernel-level evaluation (§6.2). Heimdall

achieves (a) most stable latencies at p50 to p99.99 percentiles and

(b) lowest average latency.

6.2 Kernel-Level Evaluation
While the previous section shows a user-level deployment,
this section briefly shows Heimdall results when deployed
inside the Linux kernel block layer. As we already did a
large-set experiment previously with homogenous datacen-
ter Samsung SSD 970 PRO 1TB SSDs, here we provide a
different setup by running a portion of Microsoft trace on a
machine with two consumer-grade SSDs, Intel DC-S3610 and
Samsung PM961. As demonstrated in Figure 12a, Heimdall
also works effectively for in-kernel deployment and on het-
erogenous SSDs, outperforming other methods by delivering
faster latencies (in the y-axis) at various percentiles (in the
x-axis). Figure 12b further shows a successful in-kernel de-
ployment of Heimdall, delivering the lowest average latency,
38-48% faster compared to the non-baseline methods.

6.3 Wide-Scale Evaluation
So far, we have analyzed Heimdall on a single machine
with multiple drives. This section shows Heimdall’s per-
formance with a “wide-scale” setup by deploying Heimdall
in Ceph distributed storage system [78]. For this, we use
10 Chameleon Ice Lake machines, each with two 2.30 GHz
40-core Intel(R) Xeon(R) Platinum 8380 with 256 GB DRAM.
On each machine, we deploy two Ceph Object Storage Dae-
mons (OSDs) to set up a replicated storage with primary
and secondary OSDs. Due to limited availability of dual SSD
machines in the Chameleon cluster, we set up the OSDs on
top of FEMU-emulated SSDs (100 GB each) [50]. To send
requests to these 20 OSDs, we create 20 client nodes and run
noise injectors to see how the admission policies react to
noisy neighbors. Based on the results from the prior section,
we compare three methods: baseline, random, andHeimdall.
In the baseline Ceph setup, each request is directed to the
primary OSD, whereas in the random setup, requests are ran-
domly load-balanced. LinnOS is excluded from this evalua-
tion because it only supports fixed 4KB per-page predictions,
making it incompatible with Ceph’s variable-sized I/O oper-
ations. Since Ceph workloads involve diverse request sizes
across a distributed storage environment, a system like Lin-
nOS cannot generalize effectively because it is designed for
uniform, page-level decision-making. This further highlights
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Figure 13. Wide-scale evaluation (§6.3). CDF latency on

Ceph cluster for (a) 𝑆𝐹 = 1, (b) 𝑆𝐹 = 10; (c) latency reduction at

percentiles ranging from p50 to p95 across various 𝑆𝐹 s.

Heimdall’s flexibility, as it seamlessly integrates with Ceph
and other large-scale systems, making it easier to deploy and
adapt to real-world storage environments.

The latency CDF in Figure 13a shows that in a wide-scale
evaluation,Heimdall also delivers the best result. Furthermore,
we also vary the “scaling factor” (𝑆𝐹 ). According to Google’s
seminal “Tail at Scale” paper [24], an end-user request can
consist of multiple parallel “sub-requests” to different desti-
nation servers, but the end-user request is only considered
complete when all the sub-requests are complete. To show
Heimdall’s benefits when the tail is amplified by scale, we
vary the 𝑆𝐹 factor (e.g., 𝑆𝐹 = 10 means an end-user request
has 10 parallel sub-requests. Figure 13b shows the latency
CDF when 𝑆𝐹 = 10, showing that tail behavior starts ap-
pearing in baseline at p75 and Heimdall can efficiently cut
the large portion of the tail area. Furthermore, Figure 13c
shows the tail latency reduction of Heimdall vs. random (in
the y-axis) at various percentiles (x-axis) across a variety of
scaling factors (as shown in the legend). Heimdall wins in
all the scenarios (positive percentage of latency reduction).

6.4 Accuracy
Behind Heimdall’s strong performance lies the high accu-
racy it achieves. This section dissects how every design decision

contributes to increasing Heimdall’s overall accuracy. There
are five main metrics of accuracy that we use: ROC-AUC,
PR-AUC, F1-Score, FNR, and FPR, based on the number of
true/false positives and negatives. Their equations can be
found here [23]. In our case, true positive (TP) implies that the
model correctly identifies the I/O as “slow” and false positive

(FP) implies the opposite (marked as “slow” but the I/O will
actually be fast if submitted to the device).

In our domain, ROC-AUC is the preferred metric for imbal-
anced datasets as it balances sensitivity and specificity [13].
More specifically, the tail latencies are the minority com-
pared to the fast latencies. Unlike accuracy or precision,
ROC-AUC provides a comprehensive evaluation that con-
siders the trade-off between true positive and false positive
rates at various classification thresholds.

As shown in Figure 14a, we measure the resulting ROC-
AUC score (x-axis) of every step-by-step optimization (y-
axis). These optimizations contribute to enhancing both the
dataset and the model which increases HEIMDALL’s overall
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Figure 14. Accuracy evaluation (§6.4). Contribution of each
step; comparing (a) ROC-AUC only and (b) all metrics of LinnOS to-

wards Heimdall design steps: Basic Labeling (LB), Feature Scaling (FC),

Accurate Labeling (LA), Feature Extraction (FE), Feature Selection

(FS), Model Engineering (M), and Noise Filtering (LN).

accuracy at every step of the way. The numbering, (𝑛), below
corresponds to the y-axis values in Figure 14a.

(0) We first measured LinnOS’ accuracy as a baseline, 67%
average across over 100 random datasets. In measur-
ing LinnOS’ accuracy, to ensure fair comparison, we
used the LinnOS architecture and applied the same
setup and conditions as for our Heimdall architecture
during testing. LinnOS’ accuracy dropped significantly
compared to what the authors reported in the paper
four years ago. The model is outdated given the dif-
ferent behavior of modern SSDs (faster latencies) and
more recent workloads released by the community,
which highlights the necessity to re-design the model
with a more extensive ML pipeline.

(1) Here, we began developing Heimdall using LinnOS’
original feature set, model architecture, and basic

cutoff-based labeling (LB). However, we removed dig-
itization—the feature scaling technique used in Lin-
nOS—because it is specifically designed for per-page
(4KB) I/O admission and assumes uniformly sized I/Os.
Since Heimdall’s main approach moves away from
per-page decisions to handling variable-sized I/Os,
retaining digitization would introduce bias and dis-
tort the learning process. Removing it ensures a more
meaningful comparison, allowing us to directly eval-
uate the impact of period-based labeling in a broader
I/O admission scenario. This adjustment led to a 16.8%
drop in accuracy, bringing it down to 50.2%. How-
ever, this drop is valuable as it establishes a controlled
lower bound, providing a clear baseline to quantify
the improvements introduced by period-based labeling
and subsequent optimizations. By shifting our focus
to variable-sized I/Os in this stage, we create a more
flexible and realistic evaluation framework that better
reflects modern storage workloads.

(2) We then applied min-max scaling (FC) (§3.3) to nor-
malize the input features instead of using digitization
(as in LinnOS), resulting in a slightly better accuracy
(67.5%) compared to LinnOS.

(3) Afterward, we crafted our more accurate period-based
labeling (LA) method (§3.1) and used it to replace Lin-
nOS’ cutoff-based labeling. As a result, we increase the
accuracy by 5.5%, bringing it to 73%.

(4) Then, with additional feature extraction (FE) (§3.3), in-
cluding I/O size and historical throughput, the accu-
racy gains another 4% improvement (now reaching
77%) as Heimdall now can discern patterns related to
the volume and rate of data being transferred.

(5) To reduce the model’s inference overhead, we applied
a feature selection (FS) method (§3.3) that maintains
accuracy without inducing degradation.

(6) Likewise, we employed model engineering (M) (§3.4
and §3.5) steps consisting of learning task exploration
(ML), model exploration (ME), hyperparameter tuning
(MT), and validation (MV), to find a balance between
the model’s complexity and accuracy. We obtained
a minimalist model capable of maintaining the same
level of accuracy achieved thus far.

(7) Finally, our noise filtering (LN) (§3.2) proves to be one
of the most important contributions, which increases
the accuracy by 16%, leading to 93% model accuracy.

Furthermore, to show that we are not biased over one ac-
curacy metric, Figure 14b shows the resulting accuracy (in
the y-axis) across the five accuracy metrics (the five lines) as
we add the step-by-step contributions (in the x-axis). Overall,
as more optimizations are introduced, ROC-AUC, PR-AUC,
and F1-Score continue to increase. Furthermore, the false-
negative and false-positive rates (FNR and FPR) also continue
to decrease as desired.

6.5 Joint/Group Inference
We now discuss Heimdall’s joint inference perfor-
mance (§4.2). As shown in Figure 15a, with the default set-
ting of Heimdall (without joint inference, shown by joint
size = 1), it can only receive 0.5 mIOPS workload before its la-
tency spikes to 2µs. However, with a joint size = 9,Heimdall
maintains latency under 2µs even with a 4 mIOPS workload
on 1 CPU core, an 8× heavier workload than the default
Heimdall. Note that this latency includes queueing delay,
rendering it slower than our fastest inference latency (§4.1).
Joint inference reduces accuracy, as quantified in Fig-

ure 15b. For example, transitioning from the default Heim-
dall to 9 I/O joint inference, the accuracy drops from 88%
to 81% in the median value. The figure shows the resulting
accuracy distribution across 50 random datasets. Given the
results above, we believe that joint size = 3 is appropriate
for balancing out the throughput/accuracy tradeoff. When
deploying Heimdall, storage administrators can also adjust
the joint size dynamically.
We further evaluate the effectiveness of joint inference

by comparing it with LAKE [26]. LAKE enhances LinnOS’
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Figure 15. Joint inference (§6.5). (a) Throughput stability,
(b) model’s accuracy, and (c) comparison with LAKE [26].

inference throughput by providing easier GPU accessibil-
ity in kernel space, enabling batched ML inferences to be
offloaded to the GPU. For a better comparison, we imple-
ment three versions of Heimdall: GPU batch (accelerated
by LAKE’s mechanism), CPU batch, and CPU-based joint
inference. Figure 15c presents the results on the GeForce
GTX 1660 SUPER GPU, where we vary the number of I/Os
to be inferred simultaneously from 1 to 128. First, LAKE and
Heimdall perform similarly under GPU accelerations, where
Heimdall gains an upper hand up to 0.01ms. Second, com-
pared to GPU-based approaches (LAKE and Heimdall GPU
batching), Heimdall CPU-based joint inference reduces the
inference latency by up to 10×. Third, compared to Heim-
dall CPU batching, Heimdall CPU-based joint inference
has much lower inference latency when the number of si-
multaneous I/Os scales up. This is because batching has the
computational complexity of N×, where N is the batch size.
However, joint inference shares similar input features among
multiple I/Os and merges them into a single inference, mak-
ing the computation overhead negligible for larger batch size.
Thus, Heimdall with joint inference can tolerate more I/Os
intensive scenarios and provide better accessibility without
relying on GPU.

6.6 CPU and Memory Overhead
We now assess Heimdall memory and CPU overhead. Fig-
ure 16 shows that, compared to LinnOS, our model achieves
(a) 2.4× less memory overhead, 68KB vs. 28KB, and (b) 2.5×
less CPU overhead.Heimdall has a total of 3472 weights and
biases, which is smaller than LinnOS’ total of 8706 weights
and biases. Furthermore, our model has 2.4× fewer multi-
plication operations, 3472 vs. LinnOS 8448 multiplications.
Moreover, Heimdall makes significantly fewer inference de-
cisions since it operates on a per-I/O basis instead of per-page
decisions like in LinnOS. To further reduce the overhead,

Heimdall can be deployed with joint size = 3 (represented
by Heimdall-J3, light-blue bar), resulting in 85% less CPU
overhead compared to LinnOS.

6.7 Training Time
Finally, we report the av-
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Figure 16. Overhead
(§6.6). (a) Memory & (b) CPU.

erage training time of Heim-
dall, which depends on the
number of I/Os. For every
1 million I/Os we use for
training, it takes us 16.8 sec-
onds of preprocessing time
on CPU and 3.7 seconds of
training time on GPU. Preprocessing includes labeling, ex-
tracting features, normalizing, and shuffling the data. We
trained the model once on each trace file, assuming that
each trace belongs to different hardware and workload, thus
requiring a learning phase before usage. The next question
to answer is how much data to train on and how should
we retrain the model in a long deployment scenario. This
significant research question falls outside the scope of this
paper. Answering it would necessitate further exploration
of the ML pipeline, as we will delve into in the next section.

7 Retraining for Longer Deployment
In reality, ML models are deployed for the long term. In this
context, we conduct a preliminary long-term evaluation of

Heimdall by testing it on an 8-hour real-world trace with one

of the most “challenging” traces where accuracy fluctuates in

the long run. Here, we used a Tencent trace where the write
IOPS is 2× more than the read IOPS, triggering more GC
activities. Furthermore, this trace exhibits an almost constant
I/O interarrival time, causing all devices to experience similar
workloads and heavy utilization simultaneously.

Figure 17a shows Heimdall’s accuracy after a single
training session using the initial 1, 5, and 15 minutes of the
trace. We measure the accuracy within a 10-minute window
(a dot is the model’s average accuracy in the last 10 minutes).
We can reach two simple conclusions. First, a longer training
trace (e.g., a 15-minute trace) results in better long-term over-
all accuracy, but requires longer training time (§6.7). Second,
accuracy fluctuates over time, with a min-max accuracy of
63%–82%. This is also known as model’s performance drift,
which could stem from factors like shifts in workload behav-
ior (input drift), device/environment changes (concept drift),
and others [79].
To address this, we built a preliminary retraining policy

that monitors the model’s accuracy every minute and trig-
gers retraining when the accuracy drops below 80%. To keep
retraining light, we only retrain using the last 1 minute be-
fore the trigger. Figure 17b shows the result, where the
vertical blue lines represent the times when retraining is
triggered. More specifically, within this 8-hour window, re-
training occurs 37×, each utilizing an average of 816k I/Os
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Figure 17. Long-term evaluation (§7). Heimdall perfor-

mance with different training methods: “First N min” trains the model

once using only the first N minutes of the workload, while “Retrain”

uses a simple retraining strategy described in §7. Vertical blue lines

mark the time when retraining was triggered.

ML Methods→ DDDD LLL FFFF MMMMM TTT OOOOO PPPPP
CRSA BAN SECR LETVH SBC JTQLM RMEAD

LinnOS [32] xxxx x.. xx.. ..x.x ..x ..xxx x....
LAKE [26] xxxx x.. xx.. ..x.x ..x ..xxx x..x.
Baleen [80] xx.. x.. xx.. xxx.x xx. ..... x.xx.
Cacheus [68] xxx. x.. .x.. ..x.x ... ..... ..x..
GLCache [82] xx.. x.. xx.. ..x.x x.. xx.x. x....
XStore [77] xx.x x.. .x.. .x..x x.. .x.xx x...x
Bourbon [21] xxx. x.. .xx. xx..x x.. ...xx x....
LeaFTL [73] xx.. x.. .x.. ..x.x ... ...xx x.x..
Rolex [54] xxx. x.. .x.. ....x ... .x.x. x...x
KML [9] xxx. x.. xxx. .xxxx x.. ..xx. x....
Voyager [72] xx.. xx. xx.. ..x.x ... ..xxx ..x..
DeepSketch [64] xx.. x.. .x.x xxxx. .x. ...x. ..xx.
OSML [55] xx.. x.. .xx. xxxxx ..x ...x. xx.x.
Llama [57] xx.. x.. xx.. x.x.x x.. ...xx x....
TraceRNN [12] xx.. x.. xx.. x.x.. x.x ..... x....
Heimdall xxxx xxx xxx. xxxxx .x. xxxx. xxx..

Table 2. Usage of MLmethods in ML-for-storage liter-
ature (§8) . The table shows the usage of ML methods in ML-for-

storage papers. Each column has a two-letter acronym that represents

an ML method shown earlier in Figure 1. For example, “
𝐷
𝐶
” in the first

column denotes “Data Collection.” “X” implies use of the method and

“.” implies absence/no-use.

which can be completed in a couple of seconds (§6.7). This
initial result also points to more research questions. For exam-
ple, the presence of consecutive retraining instances (vertical
blue lines that are close to each other) suggests that some
retraining decisions may not be useful. Second, we cannot
expect the last 1-minute trace before the retraining session is
available because per-request logging is turned off by default
due to the significant overhead [16].

Overall, these findings suggest that there are more topics to

explore in this long machine learning pipeline for storage (as
in Figure 1) such as efficient retraining, continual learning
models [48, 49, 58], and model management [39, 44, 67, 71].
There are many research questions to ask. When to retrain

the model? How to avoid catastrophic forgetting during
retraining? How to detect performance drifts? What are the
I/O characteristics that can provide hints of workload drifts?
How often and how much data to use to check for drifts?

8 Discussions and Future Works
With Heimdall’s success in achieving high accuracy and
reducing tail latency while maintaining sub-µs overhead in
real-world deployments like Linux kernel and Ceph storage
systems, we believe that its achievements will ignite discus-
sions and raise important questions for future research:

8.1 Heimdall’s Broader Impact
Heimdall is the result of applying various machine learning
methods in a disciplined and meticulous manner, enriched
with deep domain knowledge. Incorporating this domain
expertise into the design of the ML-based solution proved
to be crucial. As a result, Heimdall achieved a significant
performance improvement compared to previous approaches
to the same problem. Therefore, despite the surge in ML
applications for storage domains, we believe that ML’s full
potential has yet to be unlocked.
To evaluate to what extent this longer ML pipeline is

applied to ML-for-storage research, we summarized re-
cent research papers in Table 2. The five-row groups in
the table represent papers in popular storage domains,
such as admission [26, 32, 80], caching [68, 77, 82], index-
ing [21, 54, 73], prefetching [9, 72], and miscellaneous cate-
gories [12, 55, 57, 64]. We conclude that the ML-for-storage
literature has gaps in exploring various stages of this pipeline.
For example, in the data labeling stage, prior works only

employ one labeling method, hence opening an opportunity
to increase the accuracy by integrating domain knowledge
to a more “accurate labeling” and possibly “noise filtering” to
avoid “garbage in, garbage out” [18]. In the feature engineer-
ing stage, “feature scaling” is not fully studied, potentially
causing the model to assign disproportionate importance
to certain features over others [62]. Finally, there is a big
chance of applying our “joint/group inferences” in order
to increase efficiency and make it feasible for production
system deployment. Many also did not consider the need
for “retraining/relearning” for long-term deployment, po-
tentially in “multiple layers/targets.” Thus, there exists a big
opportunity in escalating the performance and reliability of
ML-powered applications.
As highlighted in the last row of Table 2, Heimdall’s

pipeline covers more machine learning approaches. This
more rigorousmethodology attributes toHeimdall optimum
performance shown through the evaluation section (§6). Ap-
plying each method we devised in this paper to all papers in
Table 2 is out of our scope and will be left as future work.
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Figure 18. Heimdall vs. AutoML (§8). Comparison of

Heimdall and AutoML in terms of: (a) Accuracy, (b) Exploration time,

(c) Model generalization.

8.2 Towards Automatic Heimdall Pipeline
After understanding the effort in infusing domain knowledge
to select and apply suitable techniques, one might wonder
if Automated Machine Learning (“AutoML”) can replace our

manual approach. AutoML can indeed promote rapid design
prototyping with less human labor. However, there are three
limitations hindering AutoML’s feasibility: (1) Limitation in
understanding and applying domain knowledge, (2) Explo-
ration computation overhead, and (3) Deployment consider-
ations. To show these limitations, we use auto-Sklearn [25],
a state-of-the-art framework that automates ML algorithm
selection and its hyperparameter tuning.
In the first experiment, we randomly picked 50 datasets

and supplied the raw dataset to the AutoML framework with-
out the manual feature engineering steps that we did (§3.3).
We use 16 AutoML classifiers under various algorithm cate-
gories as shown in Figure 18. This is deliberate to see how
much AutoML methods can help with the user exerting the
least possible action.

Using auto-Sklearn, AutoML autonomously conducts hy-
perparameter tuning. Figure 18a compares the ROC-AUC
(x-axis) of AutoML models (top rows) and Heimdall (last
row). AutoML models exhibit suboptimal performance, with

an average accuracy 22% lower than Heimdall. This outcome
aligns with our expectation: given that AutoML exclusively
utilizes the raw feature set without domain-specific derived
features (e.g., queue length), AutoML models are subopti-
mum in identifying meaningful correlations between the
feature sets and the resulting label. Although one can con-
figure the AutoML framework to explore derived features,
the process will significantly increase the execution time.

In the second experiment, shown in Figure 18b, we high-
light that AutoML incurs high exploration time that leads to

significant computational overhead during exploration. Specif-
ically, the exploration time (in the x-axis) for AutoML models

is ranging from 1.8 to 4.8 hours. This is due to the inherently
explorative nature and unbounded complexity of AutoML
models. It is important to note that this experiment was con-
ducted on a CPU, as auto-Sklearn does not support GPU
acceleration by default. Heimdall’s training time on the
CPU could be further optimized (though beyond the scope
of this paper) by porting the training code to C/C++ and
leveraging CPU-optimized training libraries. Future work
could explore optimizing AutoML models and reducing their
training complexity, as their exhaustive exploration remains
a challenge for efficient deployment.

In the third experiment (Figure 18c), we assess the gener-
alizability of models generated by AutoML across different
datasets. The results show that AutoML creates models with

highly divergent architectures for each dataset, unlike Heim-
dall, which remains agnostic to the dataset. We quantify this
lack of generalization by computing the cosine similarity of
the models (log-scaled x-axis), where Heimdall consistently
maintains a similarity score of 1. In contrast, AutoML models

demonstrate poor cross-dataset generalization (cosine similar-

ities < 0.01). This indicates that AutoML-generated models
are not reusable across datasets, requiring re-exploration
and retraining for each new workload, which incurs sub-
stantial costs to be deployed in production systems. All in
all, although there is a significant potential for transforming
Heimdall into a fully-automated system similar to AutoML,
we leave this as future work.

9 Conclusion and Competitions
This paper presents Heimdall, an ML-powered I/O admis-
sion control designed with a strong emphasis on perfor-
mance and deployment feasibility. Heimdall significantly
reduces tail latency while maintaining sub-µs inference over-
head. Our extensive evaluation demonstrates its effective-
ness across multiple deployment environments, including
user-level storage, in-kernel systems, and distributed stor-
age clusters. Beyond its immediate impact on I/O admis-
sion control, Heimdall’s extensible ML pipeline provides a
foundation for broader research in ML-driven storage opti-
mizations. To encourage further innovation, we have used
Heimdall as a testbed for “mini competitions”, inspired by
popular competitions such as ImageNet and Kaggle [3, 4]. In
one such effort, 15 students participated in exploring new
techniques, experimenting with 20 forms of data augmenta-
tion, 35 classification models, and 20 regression models, as
well as training strategies such as sampling and quantization.
We release Heimdall code publicly, with the hope that it
benefits the research community—not only in advancing I/O
admission policies but also in exploring other critical storage
optimizations and system-level ML applications.
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A Artifact Appendix
A.1 Abstract
The artifact documents Heimdall’s data science pipeline,
joint inference technique, also client and kernel deployment.

A.2 Description & Requirements
There are 4 experiments outlined in experiments readme and
all steps are given under documentation folder.

[How to access] The source code is publicly avail-
able in https://github.com/ucare-uchicago/Heimdall.git, DOI
10.5281/zenodo.14874299.

[Hardware dependencies] Client-level and kernel-level
integration must be run on a machine with two unmounted
SSDs, while others can be run on any machine.

[Benchmarks] We use public I/O traces from Microsoft
[61], Alibaba [6], and Tencent [83]. These traces are a sample
result of the preprocessing explained in Section §6.1.

A.3 Evaluation workflow
A.3.1 Major Claims. Note that due to the large scale ex-
periment that took an ample amount of time, we show a
random sample of small dataset for the artifact.

First, with several domain specific designs including
period-based labeling and 3-stage noise-filtering, Heim-
dall’s data science pipeline improves the decision accuracy
from 63% to 93% compared to LinnOS (Experiment (E1)).
Second, with joint-inference, Heimdall maintains a low

overhead with workload (4 mIOPS) that is 8 times heavier
than the default one, while still maintaining accuracy greater
than 80% (Experiment (E2)).

Third, Heimdall achieves lower average latency and tail
latencies compared to other algorithms at the C client-level
and using 500 workloads (Experiment (E3)).
Fourth, Heimdall achieves lower average and tail laten-

cies at Linux kernel prototyping (Experiment (E4)).

A.3.2 Experiments. Each simulation experiment would
take less than 30 human-minutes, and prototyping exper-
iments can take up to 3.5 hours. We recommend running
these experiments on Chameleon testbed.

§Experiment (E1): Heimdall-Pipeline [15 mins human-

minutes]: Evaluate the decision accuracy of Heimdall.

[Preparation] Please follow the testbed reservation
guideline to reserve a storage_hierarchy node at CHI@TACC
site. Afterwards, follow the documentation.

[Execution] First, replay traces without the help of Heim-
dall and analyze the replayed results. We first compile the
trace replayer and run sample traces. Then, we investigate
into the traces we replayed. Tail analyzer script produces
a profound characteristics profiling of replayed traces as
part of our analysis. Next, we conduct period-based labeling,
feature extraction and selection, and finally model training.
§Experiment (E2): Joint-Inference [5 human-minutes]:

Evaluate the accuracy-loss when utilizing joint-inference.

[Preparation] The preparation phase of E2 is the same
of E1 where the environment of E2 will be similar as E1.

[Execution] To prepare the training with joint-inference,
in this step, we combine multiple I/Os into one I/O with
extended features and an aligned label. We then train the
model, deploy, and evaluate the accuracy on test set. You
can change the value of -batch_size argument, observe the
inference speed up and accuracy trade-off.

§Experiment (E3): Client-Level [60 human-minutes]: Eval-

uate the resulting I/O latency and tail cut.

[Preparation] Please reserve and set up a machine that
have two unmounted SSDs from Chameleon Cloud.

[Execution] The documentation outlines step-by-step in
running Heimdall against LinnOS, Random, Hedging, and
LinnOS+Hedging. Training of Heimdall and LinnOS can be
done in parallel while replaying has to be run sequentially.
After running the script for each algorithm, run the script to
analyze results and obtain the latency CDF graph.
§Experiment (E4): Linux Kernel Deployment [60 human-

minutes]: Evaluate the latency improvement

[Preparation] Please follow the testbed reservation
guideline. After cloning the artifact repository, follow the
documentation to set up the machine.

[Execution] Compile the Heimdall kernel and update
the grub configuration. Next, reboot the machine to let the
compiled kernel be booted. After rebooting, you can check
whether the kernel is successfully changed via uname -r,
which is expected to output 6.0.0-heimdall. To train theHeim-
dallmodule, we need to configure the devices and the traces
to test with. Please change the configuration file in $HEIM-

DALL_KERNEL/config/config.conf on two variables:

• SSD_DEVICE0: unmounted SSD as primary replica.
• SSD_DEVICE1: unmounted SSD as failover replica.

After configuration, you can now train the model, replay
the traces, and plot the results. You are expected to see the re-
sults of baseline (no I/O admission and prediction), random,
and Heimdall. Two figures will be generated, one demon-
strates the average read I/O latency and the other plots the
latency percentiles.

https://github.com/ucare-uchicago/Heimdall/tree/main/documentation/Experiments.md
https://github.com/ucare-uchicago/Heimdall
https://doi.org/10.5281/zenodo.14874298
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/testbed_reservation.md
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/testbed_reservation.md
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/1_heimdall_pipeline.md
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/testbed_reservation.md
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/testbed_reservation.md
https://github.com/ucare-uchicago/Heimdall/blob/main/documentation/4_kernel_level_integration.md
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