
Verifying Semantic Equivalence of Large Models with
Equality Saturation

Kahfi Soobhan Zulkifli*
University of Virginia

USA

Wenbo Qian*

Northeastern University
USA

Shaowei Zhu
Amazon Web Services

USA

Yuan Zhou
Amazon Web Services

USA

Zhen Zhang
Amazon Web Services

USA

Chang Lou
University of Virginia

USA

Abstract
Modern machine learning frameworks support very large
models by incorporating parallelism and optimization tech-
niques. Yet, these very techniques add new layers of com-
plexity in ensuring the correctness of the computation. An
incorrect implementation of these techniques might lead to
compile-time or runtime errors that can easily be observed
and fixed, but it might also lead to silent errors that will result
in incorrect computations in training or inference, which do
not exhibit any obvious symptom until the model is used later.
These subtle errors not only waste computation resources, but
involve significant developer effort to detect and diagnose.

In this work, we propose AERIFY, a framework to auto-
matically expose silent errors by verifying semantic equiva-
lence of models with equality saturation. AERIFY constructs
equivalence graphs (e-graphs) from intermediate representa-
tions of tensor programs, and incrementally applies rewrit-
ing rules—derived from generic templates and refined via
domain-specific analysis—to prove or disprove equivalence
at scale. When discrepancies remain unproven, AERIFY pin-
points the corresponding graph segments and maps them back
to source code, simplifying debugging and reducing devel-
oper overhead. Our preliminary results show strong potentials
of AERIFY in detecting real-world silent errors.

CCS Concepts: • Computer systems organization → Re-
liability; • Software and its engineering → Formal soft-
ware verification; • Computing methodologies → Machine
learning.

Keywords: Machine Learning, Silent Errors, Model Verifica-
tion, Semantic Equivalence, Equality Saturation

*Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International
License.
EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/2025/03
https://doi.org/10.1145/3721146.3721943

ACM Reference Format:
Kahfi Soobhan Zulkifli, Wenbo Qian, Shaowei Zhu, Yuan Zhou,
Zhen Zhang, and Chang Lou. 2025. Verifying Semantic Equivalence
of Large Models with Equality Saturation . In The 5th Workshop on
Machine Learning and Systems (EuroMLSys ’25), March 30-April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3721146.3721943

1 Introduction
Machine learning research today has increasingly become a
race to scale, where larger models consistently outperform
smaller counterparts across diverse tasks. From language mod-
els like GPT [13] to vision transformers [27], performance
gains are often linked to model size, with billions of param-
eters enabling more expressive representations and general-
ization. The latest model of Llama [38] boasts 405 billion
parameters, and DeepSeekV3 [42] exceeds 671 billion.

For years, scaling techniques, such as distributed training
or inference, memory optimizations, and hardware acceler-
ations, have been the primary focus to support ever-larger
models. However, as models reach unprecedented scales, a
new reliability crisis is emerging. Developers increasingly
observe silent errors [19, 28, 39, 40]—severe quality degrada-
tion in trained models without triggering explicit error signals.
For example, they are often introduced by bugs [7–9] in dis-
tributed training when synchronizing between devices. Thus,
scaling alone is not enough; ensuring robustness becomes the
next critical challenge.

Yet, detecting and diagnosing silent errors in ML mod-
els remains a crucial but elusive challenge. Deep learning
models emerge from a complex pipeline involving ML frame-
works [3, 4], graph optimizers [6, 14], schedulers [10, 15],
and backends [1]. A recent study suggests such issues are also
observed from faulty hardware [32]. Bugs can lurk at any of
these layers, making troubleshooting a daunting task.

Despite efforts in testing of ML frameworks [35, 52] and
compilers [28, 30, 55], they would not be able to ensure ab-
sence of errors. Silent errors in the ML training and inference
context are currently often discovered after observing loss
divergence in training or severe output quality degradation
in inference, making it highly desirable to reason about cor-
rectness of the computation prior to runtime. Yet, developers

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721146.3721943
https://doi.org/10.1145/3721146.3721943

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zulkifli et al.

today are still relying on an ad hoc approach—manually ex-
tracting and comparing intermediate tensor values at different
phases. This process is not only tedious but also unreliable, as
floating-point computations naturally introduce small discrep-
ancies, which makes comparisons imprecise and inconclusive.
Even when discrepancies are detected, pinpointing the root
cause remains a painstaking effort, leaving developers strug-
gling with uncertainty and inefficiency. A systematic and
robust detection solution is urgently needed.

In this work, we argue that verifying ML computations
rather than relying on testing—is not only feasible but essen-
tial. ML computations are usually expressed in computational
graphs, which capture the structured flow of data and transfor-
mations throughout training and inference. By analyzing the
semantic equivalence between the original and transformed
graphs, we can move beyond numerical comparisons to sys-
tematically detect and diagnose silent errors.

How can we ensure the correctness of a computational
graph? One intuitive way to ensure that transformations done
to a computational graph are correct is to use a verified tensor
compiler or provably correct graph rewriting [11, 21, 36, 48,
51]. But there are currently few ML frameworks or compilers
in practice offering correctness guarantees, not to mention
that ML developers often need to do hand-optimizations due
to the fast-moving nature of the field. Given a computational
graph and its transformed version—without guarantees on
transformation properties as in verified graph rewrites—it is
unclear how to efficiently establish their equivalence. This
challenge arises from the undecidability and complexity of
program equivalence, even when restricted to DAGs with-
out loops [24]. To tackle this, we consider a technique based
on static analysis combined with equality saturation [41],
which constructs an e-graph that facilitates reasoning about
graph equivalence. Equality saturation has traditionally been
used to optimize the compilation process while preserving
correctness. However, its compact representation of equiva-
lence classes and efficient reasoning of equivalence makes it
a compelling candidate for verifying the correctness of ML
computational graphs by jointly reasoning about the seman-
tics of many potential transformations.

How do we tackle the complexity of equivalence checking?
Even though the space of semantic-preserving graph transfor-
mations is vast, we observe that typical transformations on
the computational graphs that enable distributed ML training
or inference follow a few distinct patterns. For example, to
distribute an associative computation onto multiple hardware
accelerators, one typically needs to specify how data and
computations are distributed, and also how the distributed
computations should be aggregated to obtain the same result
as if it were executed on a single device. Therefore, we focus
on designing effective heuristics that can help us reason about
the correctness of such patterns.

In this work, we introduce AERIFY, a framework that auto-
matically verifies the semantic equivalence of large models

input

dot

reshape

reshape

slice

{[0:256, 0:128]}

--- attention.py

slice_lim = active_qkv.size[-1] //

 (n_heads_tp + 2 * n_kv_heads_tp)

active k = hlo.slice_along(active_qkv, -1,

 (n_heads_tp+n_kv_heads_tp)*slice_lim,

 start=0)

120

121

122

123

124

input constant

+++ attention.py

slice_lim = active_qkv.size[-1] //

 (n_heads_tp + 2 * n_kv_heads_tp)

active k = hlo.slice_along(active_qkv, -1,

 (n_heads_tp+n_kv_heads_tp)*slice_lim,

 start=n_heads_tp*slice_lim)

120

121

122

123

124

slice

{[0:256, 128:256]}

Figure 1. Incorrect Tensor Slicing When Fusing QKV Projection.

between their original and transformed versions. By leverag-
ing the intermediate representations (IR) generated by ML
frameworks, it analyzes data flow and operators, repurposing
these traditionally optimization-driven graphs to expose silent
errors. As a safeguard before vast computational resources
are wasted on incorrect computations, AERIFY ensures that
transformations preserve correctness, preventing undetected
errors from affecting production workloads.

We evaluate AERIFY with real-world bug cases from AWS
transformers-neuronx [5]. We have successfully identified
and reproduced two real-world production issues. Currently,
we are collaborating with AWS developers to test, improve,
and deploy the prototype in production workflows.

This paper is structured as follows. In Section 2 we provide
the background knowledge for ML computational graph and
equality saturation. We use a motivational example to intro-
duce our approach in Section 3. We then discuss challenges
brought by large models in Section 4, and describe the system
design of AERIFY in Section 5, emphasizing on how to scale
our solution to very large models with derived rules and incre-
mental checking. We conclude challenges and future works
in Section 7.

2 Background
2.1 Computational Graph
DNN programs including training and inference can be repre-
sented as a computational graph for execution. A computation
graph is a directed acyclic graph (DAG) that records the execu-
tion sequence of an operation set for high-level operations [2],
which represents semantics of the programs.

Silent errors are often introduced by semantic changes,
which can be reflected in the computational graphs. We use a
real-world bug found in transformers-neuronx framework [5],
to demonstrate how to expose silent errors using computa-
tional graphs. Shown in Figure 1, the bug manifest when
concatenating a model’s query, key and value (QKV) weight
matrices due to an incorrect slicing offset for active_k in
the attention computation (the root cause is marked in red).
The buggy version mistakenly starts the slice at 0, while it
should have accounted for the number of attention heads by
offsetting the start position using n_heads_tp * slice_lim.
The wrong start position can lead to incorrect model outputs

Verifying Semantic Equivalence of Large Models with Equality Saturation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

E3: E4:

E2:

E1:

num denom exp

radicand

base

E3: E4:

E2:

E1:

num denom exp

radicand

base

rewrite

Figure 2. E-Graph Example. The two e-classes at the top (E3 and
E4) are unified with rewrite rule 1√

x → x−
1
2 , which is an actual rule

needed in reasoning about self-attention computations.

without explicit errors. The fix was straightforward, requir-
ing only an adjustment of the start parameter in the slicing
operation. However, the debugging process took significant
time due to the subtle nature of the indexing issue. Such is-
sues could have been prevented if developers had access to a
solution for checking the semantic equivalence with respect
to an oracle implementation at the computational graph level.

2.2 Equality Saturation
Equality saturation [41] is an emerging technique within com-
pilers and programming languages. It unifies all possible
rewritten forms of an expression or program within a single,
growing data structure called an e-graph. Rather than apply-
ing rewrite rules in a linear, step-by-step fashion, equality
saturation systematically applies all valid rewrites in parallel,
making it an ideal option to explore multiple optimized (but
equivalent) forms efficiently.

Figure 2 illustrates an example of an e-graph. An e-graph is
a data structure used for representing and reasoning about pro-
gram equivalences efficiently. It consists of e-classes (dashed
boxes), which group structurally different but semantically
equivalent expressions. Within each e-class are e-nodes (solid
boxes), which represent individual expression terms. Edges in
the e-graph connect e-nodes to their respective child e-classes,
capturing how expressions are composed.

To use equality saturation, users usually provide a list of
rewrite rules. Every rewrite rule has two components: an ini-
tial pattern and a transformed pattern. Both of these patterns
are semantically equivalent, but they are constructed using
different components. When rewrite rules are applied, new
e-nodes and edges are introduced (but existing structures are
never removed). Instead, newly added expressions are merged
into the corresponding e-class, preserving equivalence rela-
tionships while expanding the set of recognized expressions.

In this work, we also rely on the capability of egglog that
combines equality saturation and analysis based on Data-
log [53]. Static analyses on the computational graph is done
in the form of Datalog rules, which we introduce in Section 5.

3 Verifying Equivalence with Equality
Saturation

We advocate an approach using equality saturation to verify
graph equivalence to expose potential silent errors. Figure 3(a)
shows a distributed matrix multiplication on two devices. It
partitions the input matrices, computes local matrix multi-
plications independently, and aggregates the results using
all-reduce. Despite these structural differences, the final out-
put tensors should remain semantically equivalent. As shown
in Figure 3(b), we can verify the correctness of this distributed
matrix multiplication by comparing its computation graph
with a single-device, non-optimized baseline. We first run the
ML pipeline to generate two IR graphs: the original graph (in
this case, the single device setup) and the transformed graph
(with the distributed setup). The system records configura-
tions for the transformed graph, including parallelism degree
and the model architecture. Our goal is to construct a unified
e-graph that integrates representations of both computational
graphs, systematically identifying equivalent structures.

We then iteratively expand the e-graph by incorporating
nodes from IR graphs, applying rewrite rules, and merg-
ing nodes that represent the same structure into equivalence
classes (e-classes). We provide a list of rules that support com-
mon features such as tensor parallelism (encoding semantics
of communicative primitives such as all-reduce) and devel-
opers can optionally add rules for emerging parallelization
and optimization techniques. As shown in the graph repre-
sentation (Figure 3(b)), both the single-device and distributed
computations converge to the same e-class in the final stage.
This means that even though the distributed version intro-
duces additional steps and different shape attributes, these
transformations do not alter the final computation’s semantics.
The e-graph will eventually capture all valid transformations
when the process stops (saturation is reached).

The two versions of models are semantically equivalent
(verified) if the output nodes of both graphs belong to the same
e-class. If developers observe severe model quality degrada-
tion but the models are verified, this result eliminates the
possibility of software bugs at the level of computational
graph transformations, which significantly reduces the search
space in debugging. Otherwise, developers can focus on the
dangling nodes that cannot be merged into a single equiva-
lence class, which requires much less effort than blindly and
repeatedly examining intermediate tensor values.

4 Challenges in Large-Scale Models
The example in Figure 3 shows how we verify the correctness
of distributed matrix multiplication when parallelizing onto
two devices, where the computation graph is much simpler
and smaller than training or serving large DL models. In this
section, we identify key challenges in scaling our approach
to realistic use cases.

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zulkifli et al.

!"#$%&'()&*+(,-$."()&/$.+0(&10&2"(&34

reshape

dot add transpose reshape

!*#$5)"16$),1),',4("(&34

Single Node

(Baseline)

Distributed Setup

(Tensor Parallelism, degree = 2)

reshape

dot add transpose reshape all-reducereshape

reshape

789$:;$9$8$<X
1
, X

2
=;$:$8$<$$$$$=

A
1

A
2

X

A1

A2

Y1x

x

X1

X2 Y2

Y

Figure 3. Distributed Matrix Multiplication Example.

Balancing rule generality and practicality. Ideally the
rewriting process should only leverage general rules to cap-
ture more bug cases, but this creates a computation bottleneck—
matching more nodes in the e-graph increases time and mem-
ory costs. This has more visible impacts on popular operators
such as “dot” (commonly used for vector/matrix multiplica-
tions). On the other hand, highly specific rules cover fewer
cases and bloat the rule set with limited reusability.

Graph scaling in large models. The size of the e-graph
might be much larger compared to the size of the original
computational graph, and might grow exponentially with re-
spect to the number of nodes. In one experiment, naïvely
including three layers in Llama3.1 instead of one (tripling the
graph nodes) caused rule application time to jump from 1.57
seconds to 3 minutes. Expanding to 12 layers pushed com-
putation beyond 3 hours and consumed 100GB of memory.
Managing graph size to address this exponential growth is
crucial for deep learning models with hundreds of layers.

Lack of debugging support. Unverified results do not au-
tomatically translate to source code fixes. Large models of-
ten involve numerous code components and transformation
steps—manually searching through the whole code space is
tedious. Beyond confirming bugs, developers need precise
guidance to resolve discrepancies.

5 System Design and Challenges
AERIFY introduces the following key techniques:

• Graph partitioning before checking AERIFY parti-
tions the computational graphs into smaller subgraphs,

Source code

Verified Unverified

TransformedOriginal

ML Frameworks

Localization

Graphs

Developers

Mapping

Relations

Code

Instrumentation

Rewrite

Templates

Rules

Figure 4. AERIFY Workflow.

enabling efficient, parallel processing without over-
whelming system resources (Section 5.1).

• Layout and distribution analysis using egglog AERIFY
employs a scalable Datalog-style static analysis to rea-
son about the layout and distribution of tensor slices
onto different devices (Section 5.2).

• Rewrite rule generation: Before rewriting, AERIFY
generates rewrite rules dynamically from a set of gen-
eral templates based on graph analysis (Section 5.3).

• Bug localization: After the analysis, AERIFY maps
discrepancies back to their corresponding source code
lines, pinpointing the root cause of errors to streamline
debugging (Section 5.4).

System Workflow. We introduce AERIFY, a framework that
automatically verifies the semantic equivalence of large mod-
els by incorporating these techniques. On the high level, the
complete workflow of AERIFY consists of several stages. The
tool starts with a preparation stage by instrumenting source
codes to encode mapping relations between the IR and source
codes, which is useful for the later localization step. Next,
the tool generates two IR graphs using built-in functionalities
of ML frameworks. AERIFY analyzes the target graphs and
generates a set of efficient rules tailored for them. It then
divides the graphs into several subgraphs based on different
layers and constructs a unified e-graph incrementally. It out-
puts results (verified/unverified, reasoning steps, localization
information) to developers at the end.

5.1 Graph Partitioning
As the computational graphs become larger, the computation
resources in graph rewriting may increase exponentially in
the worst case. To address this issue, AERIFY partitions the
graphs to be verified into smaller subgraphs using heuristics.
We first divide the graph at neural network layer boundaries,
observing that a large class of deep learning framework and
compiler optimizations do not involve graph transformations
across layer boundaries, with possible reasons being 1) whole-
graph optimizations can be more costly compared to local
optimizations [36]; and 2) hardware vendors may provide
highly optimized implementations of layers to be used [14],

Verifying Semantic Equivalence of Large Models with Equality Saturation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

making it hard to perform inter-layer optimizations. Some lay-
ers (e.g., attention layers) generate significantly larger graphs,
where the heuristic of dividing at layer boundaries may not be
enough. For such layers we further subdivide these graphs by
splitting at a predefined list of operators (e.g., softmax() in
self-attention layers). We are still evaluating the effectiveness
of this subdivision heuristic in our ongoing experiments.

5.2 Tensor Layout and Partition Analysis
A key complication arises from the analysis of layout dynam-
ics and how tensor layout relates to communication primitives,
which is essential to reasoning about the correctness of dis-
tributed computations, i.e., we need a sound way to reason
about the frequent reshaping, slicing, transposes, and aggrega-
tion of tensors across multiple devices. A reshape operation
might be used to adjust tensor layout for efficiency reasons
or to shard tensors onto multiple devices, e.g., transforming
a tensor X with shape (2, 6) using reshape(X, (2, 3, 2))

and then put its two slices X[:, :, 0] and X[:, :, 1] onto
two difference devices to be processed in parallel.

AERIFY computes a relation between single-device ten-
sors and distributed tensors. This analysis is done through
the following inference rules implemented in egglog. First,
if a single-device tensor X is in the same e-class as a dis-
tributed tensor X’, and a tensor Y’ is obtained as a slice of
X’ along an axis d while the number of such slices equals
the TP degree, then we add to our set of known facts that the
concatenation of Y ′ on all ranks (devices) along axis d will
be the same as tensors X’ and X. This relation is propagated
through the operators in the computational graph. For exam-
ple, for element-wise operators like add() it is clear that if
we concat together the resulting partial results on each rank
along the sharding axis d, we will get the same result as if
we concat the operands along axis d first and then perform
the addition on the concatenated tensors. For operators with a
reduction dimension such as matmul(A, B), a little more care
is needed since we need to use the AllReduce() collective
on the shards if the operands A and B are sharded long the
reduction dimension, and AllGather() otherwise.

5.3 Rewrite Rule Generation
As we discussed before, the set of valid rewrite rules is huge,
and not all rewrite rules are meaningful to verify a particu-
lar computational graph. For example, one could rewrite a
single reshape() to an arbitrary sequence of valid reshape’s
where the shape specified in the last call is the same as the
original one, but most such rewrites are useless to us. AERIFY
generates rewrite rules automatically from a predefined set
of templates. For example, if we observe a distributed ten-
sor X’: [2, 4096] and that cat(X’, dim=0) is in the same
e-class as X for some single-device tensor X along with an
operator Y’ = transpose(X’), then we generate a rewrite rule
that allows us to conclude that transpose(cat(Y’, dim=1))

can be unioned with X, suppose we have basic properties

like transpose(transpose(A)) → A always available. Theo-
retically, one could add numerous rules involving transpose

into the picture, yet those rules will be less useful than the one
we add above since our rule connects a new distributed tensor
Y’ to an existing e-class containing at least one single-device
tensor. We find such heuristics work well in practice, since
the particular layout transformations we see in these computa-
tional graphs often serve particular purposes. In particular, we
understand that reshape() and transpose() generated by ML
frameworks and compilers are often related to tiling, sharding
of weights and inputs to multiple devices, or transforming the
physical layout of tensors to work together with the parallel or
reduction dimension on hardware accelerators. Thus, a simple
approach can effectively handle most common computational
graphs without requiring comprehensive reasoning about all
potential layout transformations.

5.4 Bug Localization in Source Code
We believe the equivalence checking tool should not only give
the binary result (verified/unverified) but also aid developers
in locating the bugs. The generated e-graph can highlight
the difference (e.g., a missing synchronization step between
device output) at the level of computational graph nodes. Still,
developers could benefit from deeper insights, such as the
exact source lines where issues originate. To facilitate this,
we instrument the ML compiler using our tool logging API
to capture source-level debugging information during graph
generation. The required manual effort is moderate as we only
need to instrument a few common interfaces.

When constructing the e-graph from the source code, AERIFY
stores metadata and associates source AST nodes with IR
graph nodes. Each IR graph node is extended with a unique
identifier, which points to the source file, function, and line
number, e.g., {source line: “flash_decoding.py:42”, expr:

"hlo.exp(...)"}. When converting IR graphs to e-graphs,
this metadata information is preserved when incrementally
adding IR graph nodes into the e-graph.

Sometimes the unverified node may not be the culprit—the
real issue may stem from upstream computation. For example,
a prior sharding operation introduced an incompatibility man-
ifesting later. Thus, once the tool identifies dangling nodes,
it should trace back to not only the unverified node but also
dependent nodes in the chain, and retrieve the corresponding
source code snippets for all tainted nodes. At the end, AERIFY
generates a debugging report that lists unmatched nodes and
their original expressions. It also lists all reasoning steps dur-
ing rewriting using egg built-in functions. Such reasoning is
useful to cross-check correctness of verification process. It
also aids performance optimization; excessive use of certain
rewrite rules in reasoning logs may indicate opportunities to
refine them to match with fewer constructs in the graph.

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zulkifli et al.

6 Preliminary Results
We have implemented a prototype, AERIFY, which applies
the methods outlined above. The tool is built on HLO IR,
though our proposed technique is also applicable to other deep
learning frameworks that leverage IR graphs. For evaluation,
we focus on issues from the AWS transformers-neuronx [5]
repository, and we have collected over 10 real-world silent
errors. For each bug in the dataset, we reproduce the issue
and generate two graphs: one for the baseline and one for the
transformed version. Emerging models such as GPT, BERT,
and Llama serve as the workloads for testing. We apply the
tool to assess whether it successfully identifies the correct
root cause. Currently, the tool supports 12 rules for semantics
in distributed training and optimization. We have success-
fully used the current version to verify 2 real-world silent
error cases. We are actively adding more rules and extend-
ing support for more complex semantics, such as advanced
parallelism patterns (e.g., context and pipeline parallelisms).

7 Discussion
We discuss limitations and the future plan of this work.

One key area for improvements is to enhance the generation
and refinement of rewriting rules. Our current approach fo-
cuses on layout dynamics, however, another common type not
supported yet is operator dynamics. For example, when the
chain grow longer with a number of nested add(add(add(x,

y), z), w) operands, a meta framework will recognize that
they all represent a single cumulative addition and can auto-
matically adapt to any number. This requires us to perform
more fine-grained contextual analysis that can adapt to vari-
ous dynamic patterns in computational graphs.

Another important direction is to extend support for more
fine-grained parallelism patterns, such as context and pipeline
parallelism. These parallelism techniques inherently split the
model’s computations across multiple contexts or stages. A
rewriting rule designed to fuse operations in one stage might
not be applicable in another if the operations are separated
by inter-device communication boundaries. Additionally, the
behavior of the model isn’t solely determined by the static
computational graph. We plan to add more instrumentation
to collect runtime information such as timing and order of
operations to support such semantics.

We plan to expand the applicability and scalability of our
framework beyond the current Amazon ecosystem. We will
test AERIFY on a wider range of models and ML frameworks
such as DeepSpeed, and incorporating feedback from produc-
tion use from AWS developers.

Finally, we see great potentials in incorporating large lan-
guage models (LLMs) into our debugging process. AERIFY
currently pinpoints the line introducing discrepancies, but it
may not necessarily be the root cause of bugs. The discrep-
ancies could come from missing operands due to bugs in

other logic. Also, it still relies developers to manually diag-
nose and resolve discrepancies. By integrating other semantic
knowledge, LLMs could potentially suggest more accurate
diagnosis results as well as possible code fixes, thereby reduc-
ing developer effort and speeding up the debugging cycle.

8 Related Work
Failures in ML Workflows. Failures are a common relia-

bility challenge in ML workflows. Many works [12, 33, 43]
propose runtime recovery strategies to detect and mitigate
crash failures or hangs. GEMINI [46] checkpoints to CPU
memory of the host machines with large bandwidth to en-
able fast recovery from crashes. Oobleck [25] introduces a
crash-fault tolerant training design with equivalent replicas.
They rely on explicit error signals and are vulnerable to subtle
silent errors. Inspired by silent failure studies in distributed
systems [20, 23, 31, 50], we focus on exposing silent errors
in ML workflows to mitigate their impacts in time.

Graph Rewriting. Optimizing ML performance through
computational graph rewriting [21, 48, 51] has gained signif-
icant attention in recent years. TASO [26] automates graph
substitutions by leveraging formally verified operator specifi-
cations. TENSAT [36] employs equality saturation to accel-
erate graph superoptimization. Alpa [54] optimizes compu-
tation graphs by automatically generating parallel execution
plans at both the inter- and intra-operator levels. Mirage [51]
explores an alternative approach by generating equivalent
graph expressions and verifying their correctness using Z3.
While their primary focus is performance optimization, these
works ensure correctness by enforcing equivalence between
transformations.

Equivalence Checking. Though the general problem of
checking equivalence of programs is a well-known undecid-
able problem, various approaches have been proposed for ver-
ifying semantic equivalence in practice [22, 37, 45]. Typically,
these techniques need to guess a correspondence between the
two programs to be checked for equivalence by construct-
ing product programs [16] or simulation relations [18], and
discharge the proof obligations for verifying the equivalence
of program fragments to SMT solvers. Work by Dahiya and
Bansal [18] is similar to ours in terms of setting, since they
also consider arbitrary transformations as opposed to trans-
lation validation, yet the problem of verifying the semantics
of distributed and parallel ML models is drastically different
from comparing compiled C programs.

ML Testing. It is known that machine learning frameworks
and compilers are error-prone to bugs due to their complexity.
Researchers have conducted bug studies [19, 39, 40] and pro-
pose many testing approaches for deep learning libraries [34,
44, 49] and compilers [30, 47, 55]. NNSmith [28] generates
diverse DNN test models by extending existing graphs and

Verifying Semantic Equivalence of Large Models with Equality Saturation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

uses differential testing to identify bugs. PolyJuice [55] gener-
ates equivalent but syntactically different graphs with equality
saturation to find mis-compilation errors. Testing can expose
some but cannot eliminate all bugs, causing many issues still
escaping from checking. AERIFY aims to capture those miss-
ing issues before they manifest at runtime.

Verified Compilers. Compiler verification has been a promis-
ing direction to ensure the correctness of compiled tensor
programs. There have been efforts verifying the soundness of
rewrite rules in compilers such as ATL [29], XLA [11] and
Halide [17]. Our approach is complementary to these efforts
since we start from the already transformed computational
graphs. The technique for proving XLA rewrite rules [11]
can also be used to formally reason about correctness of our
rewrite rule templates.

9 Conclusion
Large ML models demand new techniques to detect and diag-
nose silent errors—issues that undermine performance with-
out obvious error signals. We propose AERIFY to address
these challenges by verifying semantic equivalence between
the original and transformed IR graphs generated by modern
ML frameworks. By combining equality saturation with rule
generation, incremental checking, and localization, AERIFY
scales to large graphs and provides guidance for efficient de-
bugging. The framework thereby offers a systematic approach
to reinforce the reliability of large-scale machine learning.

Acknowledgement
We thank the anonymous reviewers for their insightful re-
views. Chang Lou is supported by the National Science Foun-
dation grant CNS-2441284.

References
[1] Cuda toolkit. https://developer.nvidia.com/cuda-toolkit.
[2] Mlir-hlo: A standalone "hlo" mlir-based compiler. https://github.com/

tensorflow/mlir-hlo.
[3] Pytorch. https://pytorch.org/.
[4] Tensorflow: An end-to-end platform for machine learning. https://www.

tensorflow.org/.
[5] Transformers neuron. https://github.com/aws-neuron/transformers-

neuronx.
[6] Xla (accelerated linear algebra). https://openxla.org/xla.
[7] Manual optimization does not synchronize gradients in ddp. https:

//github.com/Lightning-AI/pytorch-lightning/issues/9237, 2021.
[8] [bug] gradients not synchronized. https://github.com/kohya-ss/sd-

scripts/issues/924, 2023.
[9] Ddp: moving model to cpu and back to gpu breaks gradient synchro-

nization. https://github.com/pytorch/pytorch/issues/104336, 2023.
[10] S. Agarwal, C. Yan, Z. Zhang, and S. Venkataraman. Bagpipe: Acceler-

ating deep recommendation model training. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 348–363,
Koblenz, Germany, 2023.

[11] J. Arora, S. Lu, D. Jain, T. Xu, F. Houshmand, P. M. Phothilimthana,
M. Lesani, P. Narayanan, K. S. Murthy, R. Bodik, A. Sabne, and

C. Mendis. Tensorright: Automated verification of tensor graph rewrites.
Proc. ACM Program. Lang., 9(POPL), Jan. 2025.

[12] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra. Varuna:
scalable, low-cost training of massive deep learning models. In Proceed-
ings of the Seventeenth European Conference on Computer Systems,
EuroSys ’22, page 472–487, Rennes, France, 2022.

[13] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners. In Proceedings
of the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Vancouver, BC, Canada, 2020.

[14] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An
automated End-to-End optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 578–594. USENIX Association, Oct. 2018.

[15] A. Choudhury, Y. Wang, T. Pelkonen, K. Srinivasan, A. Jain, S. Lin,
D. David, S. Soleimanifard, M. Chen, A. Yadav, R. Tijoriwala,
D. Samoylov, and C. Tang. MAST: Global scheduling of ML training
across Geo-Distributed datacenters at hyperscale. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
24), pages 563–580. USENIX Association, July 2024.

[16] B. Churchill, O. Padon, R. Sharma, and A. Aiken. Semantic program
alignment for equivalence checking. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, page 1027–1040, Phoenix, AZ, USA, 2019.

[17] B. Clément and A. Cohen. End-to-end translation validation for the
halide language. Proc. ACM Program. Lang., 6(OOPSLA1), Apr. 2022.

[18] M. Dahiya and S. Bansal. Black-box equivalence checking across
compiler optimizations. In Programming Languages and Systems: 15th
Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017,
Proceedings 15, pages 127–147. Springer, 2017.

[19] H. Guan, Y. Xiao, J. Li, Y. Liu, and G. Bai. A comprehensive study of
real-world bugs in machine learning model optimization. In Proceed-
ings of the 45th International Conference on Software Engineering,
ICSE ’23, page 147–158, Melbourne, Victoria, Australia, 2023.

[20] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar. Why does the cloud stop computing?:
Lessons from hundreds of service outages. In Proceedings of the 7th
ACM Symposium on Cloud Computing (SoCC), pages 1–16, Santa
Clara, CA, USA, Oct. 2016.

[21] G. He, Z. Singh, and E. Yoneki. Mcts-geb: Monte carlo tree search is a
good e-graph builder. In Proceedings of the 3rd Workshop on Machine
Learning and Systems, EuroMLSys ’23, page 26–33, Rome, Italy, 2023.

[22] Y. Herklotz, J. D. Pollard, N. Ramanathan, and J. Wickerson. For-
mal verification of high-level synthesis. Proc. ACM Program. Lang.,
5(OOPSLA), Oct. 2021.

[23] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao. Gray failure: The Achilles’ heel of cloud-scale systems. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS XVI. ACM, May 2017.

[24] O. H. Ibarra and B. S. Leininger. On the simplification and equivalence
problems for straight-line programs. J. ACM, 30(3):641–656, July
1983.

[25] Jang, Z. Yang, Z. Zhang, X. Jin, and M. Chowdhury. Resilient dis-
tributed training of large models using pipeline templates. SOSP ’23.

[26] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken.
Taso: optimizing deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 47–62, Huntsville,
Ontario, Canada, 2019.

https://developer.nvidia.com/cuda-toolkit
https://github.com/tensorflow/mlir-hlo
https://github.com/tensorflow/mlir-hlo
https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/aws-neuron/transformers-neuronx
https://github.com/aws-neuron/transformers-neuronx
https://openxla.org/xla
https://github.com/Lightning-AI/pytorch-lightning/issues/9237
https://github.com/Lightning-AI/pytorch-lightning/issues/9237
https://github.com/kohya-ss/sd-scripts/issues/924
https://github.com/kohya-ss/sd-scripts/issues/924
https://github.com/pytorch/pytorch/issues/104336

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zulkifli et al.

[27] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah.
Transformers in vision: A survey. ACM computing surveys (CSUR),
54(10s):1–41, 2022.

[28] Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang. Generating
diverse and valid test cases for deep learning compilers. ASPLOS ’23.

[29] A. Liu, G. Bernstein, A. Chlipala, and J. Ragan-Kelley. A verified
compiler for a functional tensor language. Proc. ACM Program. Lang.,
8(PLDI), June 2024.

[30] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang. Coverage-guided tensor
compiler fuzzing with joint ir-pass mutation. Proc. ACM Program.
Lang., 6(OOPSLA1), Apr. 2022.

[31] C. Lou, Y. Jing, and P. Huang. Demystifying and checking silent seman-
tic violations in large distributed systems. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’22, pages 91–107. USENIX Association, July 2022.

[32] J. Ma, H. Pei, L. Lausen, and G. Karypis. Understanding silent data
corruption in llm training, 2025.

[33] J. Mohan, A. Phanishayee, and V. Chidambaram. CheckFreq: Frequent,
Fine-Grained DNN checkpointing. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 203–216. USENIX
Association, Feb. 2021.

[34] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 1–18, Shanghai,
China, 2017.

[35] H. V. Pham, T. Lutellier, W. Qi, and L. Tan. Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries. In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1027–1038, 2019.

[36] J. A. Pienaar, M. Phothilimthana, M. Willsey, R. Wang, S. Roy, and
Y. Yang. Equality saturation for tensor graph superoptimization. In
MLSys, 2021.

[37] L.-N. Pouchet, E. Tucker, N. Zhang, H. Chen, D. Pal, G. Rodríguez,
and Z. Zhang. Formal verification of source-to-source transformations
for hls. In Proceedings of the 2024 ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, FPGA ’24, page 97–107,
Monterey, CA, USA, 2024.

[38] M. A. Research. Llama 3.1: Enhanced capabilities in large language
modeling. https://ai.meta.com/llama, 2023. Version 3.1.

[39] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen. A
comprehensive study of deep learning compiler bugs. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, page 968–980, Athens, Greece, 2021.

[40] F. Tambon, A. Nikanjam, L. An, F. Khomh, and G. Antoniol. Silent
bugs in deep learning frameworks: An empirical study of keras and
tensorflow. CoRR, abs/2112.13314, 2021.

[41] Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new
approach to optimization. POPL ’09.

[42] D. Team. Deepseek v3: A next-generation deep learning search engine.
https://www.deepseek.ai, 2023. Version 3.

[43] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang, R. Netravali,
and G. H. Xu. Bamboo: Making preemptible instances resilient for
affordable training of large DNNs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 497–
513. USENIX Association, Apr. 2023.

[44] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: automated testing of
deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18,
page 303–314, Gothenburg, Sweden, 2018.

[45] Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence check-
ing of static affine programs using widening to handle recurrences.
TOPLAS ’12.

[46] Wang, Z. Jia, S. Zheng, Z. Zhang, X. Fu, T. S. E. Ng, and Y. Wang. Fast
failure recovery in distributed training with in-memory checkpoints.
SOSP ’23.

[47] H. Wang, J. Chen, C. Xie, S. Liu, Z. Wang, Q. Shen, and Y. Zhao.
Mlirsmith: Random program generation for fuzzing mlir compiler in-
frastructure. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1555–1566, 2023.

[48] H. Wang, J. Zhai, M. Gao, Z. Ma, S. Tang, L. Zheng, Y. Li, K. Rong,
Y. Chen, and Z. Jia. PET: Optimizing tensor programs with partially
equivalent transformations and automated corrections. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pages 37–54. USENIX Association, July 2021.

[49] J. Wang, T. Lutellier, S. Qian, H. V. Pham, and L. Tan. Eagle: creating
equivalent graphs to test deep learning libraries. In Proceedings of
the 44th International Conference on Software Engineering, ICSE ’22,
page 798–810, Pittsburgh, Pennsylvania, 2022.

[50] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo. Understanding
silent data corruptions in a large production cpu population. SOSP ’23.

[51] M. Wu, X. Cheng, S. Liu, C. Shi, J. Ji, K. Ao, P. Velliengiri, X. Miao,
O. Padon, and Z. Jia. Mirage: A multi-level superoptimizer for tensor
programs, 2024.

[52] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li. Diffchaser: Detecting
disagreements for deep neural networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pages 5772–5778. International Joint Conferences on Artificial
Intelligence Organization, 7 2019.

[53] Y. Zhang, Y. R. Wang, O. Flatt, D. Cao, P. Zucker, E. Rosenthal, Z. Tat-
lock, and M. Willsey. Better together: Unifying datalog and equality
saturation. Proc. ACM Program. Lang., 7(PLDI), June 2023.

[54] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
Y. Xu, D. Zhuo, E. P. Xing, J. E. Gonzalez, and I. Stoica. Alpa: Automat-
ing inter- and Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22), pages 559–578. USENIX Association, July
2022.

[55] C. Zhou, B. Qian, G. Go, Q. Zhang, S. Li, and Y. Jiang. Polyjuice:
Detecting mis-compilation bugs in tensor compilers with equality satu-
ration based rewriting. Proc. ACM Program. Lang., 8(OOPSLA2), Oct.
2024.

https://ai.meta.com/llama
https://www.deepseek.ai

	Abstract
	1 Introduction
	2 Background
	2.1 Computational Graph
	2.2 Equality Saturation

	3 Verifying Equivalence with Equality Saturation
	4 Challenges in Large-Scale Models
	5 System Design and Challenges
	5.1 Graph Partitioning
	5.2 Tensor Layout and Partition Analysis
	5.3 Rewrite Rule Generation
	5.4 Bug Localization in Source Code

	6 Preliminary Results
	7 Discussion
	8 Related Work
	9 Conclusion
	References

